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We propose to assess uncertainty in models of Everglades by a nested series of analysis 
procedures outlined below .  
 
BACKGROUND: Let z be a vector of input values, x be a vector of model output, p  be 
a set of parameters and H(p)z  be the  model being evaluated, so 
 
 x=H(p)z.                                                                                                                (1) 
  
Let P=(Pi ,…,PD1)  be the vector of the current values of the parameters that are assumed 
to be the best values (based on prior measurement or other analyzes).  The symbol p = 
(p1,…,pD1)  is used to denote a vector of variables that can take on different values.  
Boldface P ,p, z, x are used to denote vectors and boldface H(p) denotes a matrix that has 
elements dependent on p and other factors. 
 
In all the analyses below, the computational effort is primarily for model simulations.  
The other computations for response surface fits, optimization and statistical analysis take 
seconds or at most a few minutes of computational time and hence are not significant in 
comparison to CPU time requirements for the simulations of H(p)z.  The analysis system 
we have developed is an integrated procedure for calibration, sensitivity analysis and 
uncertainty analysis so that computationally expensive simulations done for one 
purpose can be reused for another analysis.  (For example, I discuss  below how 
simulations done for Part I are re-used for Part II.)  
 
 We are experienced in response surfaces (e.g. Chen et al., 1999) and in  applying the 
integrated procedure to large complex models where the function is treated as  a black 
box (e.g., we are given only the executable code) as in Regis and Shoemaker (2004 a and 
b in press).  We have two currently funded NSF projects on use of response surface 
methods in calibration, sensitivity analysis, and uncertainty analysis and  on parallel 
processing and grid computing.  We also have access to the Cornell Theory Center, 
which is a high performance facility to do parallel computation when needed.   We also 
expect to receive a third NSF proposal (done jointly with statistician Ruppert) on 
integrating response surface methods with  Bayesian analysis for  parameter estimation, 
sensitivity, and uncertainty analysis. 
 
Part I: Identifying a small set of sensitive parameters:   
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Complex models have hundreds or even thousands of parameters that could be uncertain. 
Our first procedure is to examine the effect of changes in a large number of parameters   
on many model outputs.  D1 is  this number of parameters and it can be  large.  Our goal 
is to identify a smaller subset  of parameters to which the model output is most sensitive 
and to analyze this smaller subset more thoroughly in Parts II and III.  .  Part I can be 
omitted if   a small number of parameters has been selected upon which you wish to base 
the uncertainty analysis.  
 
For the analysis in Part I, we consider the impact of changes in a single component Pk of 
P at a time.  This approach uses a method described in Benaman 2002 and in manuscript 
Benaman and Shoemaker 2004 (paper attached)  For each Pk, we obtain from the 
literature, the allowable range of the parameter, which is  based on the maximum (Pk

max) 
and minimum (Pk

min) allowable for each parameter (e.g. these are the upper and lower 
bounds on Pk).   
 
Perturbation method:  Sensitivity is based on changes in the values of model output in 
response to a perturbation in parameter.    Perturbation of pk  can be based on one or both 
of the following methods: a) perturb pk  up and down by a fixed percentage  or b) perturb 
pk up  where the perturbation     is  = frac * ( Pk

max-Pk) where 0< frac < 0.5 and frac is a 
constant chosen by the analyst.  Hence Pk

+  = Pk
 +  frac *  ( Pk

max-Pk).  We then use a 
similar expression involving Pi

min to select the negative perturbation.   The advantage of 
method b) is that it takes into account the uncertainty in the value of pk (e.g. large value 
of   ( Pk

max-Pk) leads to a larger perturbation).  The advantage of method a) is that it does 
not require the values of  Pk

max or Pk
min, which are often not well known.   

 
The number of simulations required for this analysis will be 2D1  if just perturbation a) or 
b) is used and  4D1  if both methods a) and b) are used.  To simplify the following 
description, we will assume only one of the two perturbations methods is used since it is 
straightforward to see how to modify the description to deal with use of both methods.   
 
We then perform all the perturbation simulations. Let Pk

+  and Pk
- be the  values when Pk 

is perturbed by method a) or b) above.   So we compute  and store (Pk
+ , H(Pk

+ )z) and   
(Pk

-, H(Pk
- )z),  where H(Pk

+ )z= H(p )z. where p is the base case except that the kth 
component has been varied.  
 
 Recall that H(p )z  is a vector-valued function that includes a number of model outputs 
Ow(p )  about which we want sensitivity and uncertainty analysis for w=1,…,Nk.   For 
example  Ow(p )   could be the water level at a specific location and time period for w=1 
and Ow(p  ) for w=2   could be water level at a different location or represent a different 
constituent like phosphorous.   
 
The PDTs (Project Delivery Team(s) of CERP Comprehensive Everglades Restoration 
Project) can  select the output variables Ow(p  ) for which they want the uncertainty 
analysis reported.  One simulation of the model H generates hundreds or thousands of  
outputs, so one needs to decide which Nk output he wishes to examine.  It should be 
noted that with our approach, the computational effort is related primarily to the D1, and 
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increasing the value of  Nk adds very little extra computation.  Hence, with this method, 
it is possible to explore the uncertainty associated with a large number of different model 
outputs (i.e. a large Nk). 
 
 The next step in the Benaman and Shoemaker approach is to compute the individual 
sensitivity of the model for each  parameter value  Pk, k=1,…, D1.  This sensitivity will 
depend upon the output variable(s)  Ow(p ) selected.  Hence to do the analysis, we can 
examine the sensitivity of  changes in parameter Pk  by looking at a sensitivity index.   
One sensitivity index we can use is  SIk,w  where 
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    (2) 

 
 
Ow

+
  and  Ow

-
   are the values of the output function for Pk

+  and Pk
-, respectively.     So   

SIk,w  is the  rate of change in the Output  Ow(p )  maximized over the positive and 
negative perturbations. Ow is the base case output Ow(P ).  The purpose of including the 
Ow and Pk in the denominator is to normalize so that the differences in SIk,w  for different 
parameters can be compared.   
 
Cumulative Sensitivity Analysis:  However, SIk,w   in (2) only indicates the sensitivity 
with regard to one output  Ow(p.).   In assessing uncertainty, we typically are concerned 
about many different model outputs.  To have an index  of  the impact on multiple 
outputs, we define  the  cumulative sensitivity index cumSIk

m to be  
 

,
m m
k w

for all
cumSI SIk ω

ω

β= ∑   (3) 

where  βw
m is a weighting that adjusts for the relative importance of output variable Ow.   

For example,  one weighting (m=1) might be related to the quality of the fit of the data at 
different locations and another weighting (m=2) might be related to prediction of events 
during certain seasons. If we want to consider just one output, then the weighting scheme 
can be structures so that  βw

m = 1 for one w and equals 0 for all other w.   Hence, we can 
have different overall indices cumSIk

m   for different weightings  (m).   
 
Ranking: The next step is to rank the value of cumSIk

m  for each m. This ranking is 
shown in Table 4  in from  Benaman and Shoemaker (2004)) for 4 different weightings of 
different outputs.  As shown in Table 4, some of the parameters are shown to be 
important for many different weighting.  These are the parameters that should be selected 
for the focus of the uncertainty analysis in Part I and II, which requires more computation 
per parameter considered than the individual sensitivity analysis discussed in Part I. 
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The further analysis will be based on d parameters, where d < D1.  The users will select 
how large d  is.  The computational difficulty of  Part II and Part III will depend primarily 
on the magnitude of  d.  The analysis in Part I helps determine which are the most 
important parameters to include in d.  Also the magnitude of the cumSIk

m   gives a 
quantified value for the importance of each parameter for a given weighting and this 
enables the user to pick a d  that is not unnecessarily large and thereby reduces 
computational effort associated with Parts II and III 
 
Summary of Part I:  This method has done a computationally efficient analysis of the 
individual sensitivity of a relatively  large number of parameters in order to identify 
which  d of   these are most important for additional analysis in Part II and III. 
Identification of d parameters is also critical in model calibration. All the simulations 
involving perturbations of the d parameters will be re-used in the analysis in Part II and 
III.  The total number of simulations done in Part I is 2D1. 2d of the simulations done in 
Part I can  re-used in the analysis in Part II.    
 
Part I can be omitted if PDT has already selected a small number of parameters upon 
which they wish to base the uncertainty analysis.  However, if earlier sensitivity analysis 
has been done to select the most important d  parameters (using our method or some other 
method), it is important that these earlier simulation results be saved so that they can be 
added to the function evaluations  used  in constructing the response surfaces below for 
Part II and III. 
 
 
Part II: Construction of a Response Surface using Symmetric Latin Hypercube 
Design and Previously Evaluated points. 
 
Assume that because of new measurements, we want to assess the variability associated 
with the value of several parameters  Pk, k=1, d .  Assume that we know the probability 
distribution of the values of Pk.  
 
Our next step is to use a Symmetric Latin Hypercube Design (SLHD) to select N more  
points at which to evaluate H(p)z in order to construct a response surface so we will have 
the values (p, H(p)z) at many points.  We use a symmetric Latin Hypercube Design as the 
initial evaluation points since the symmetry condition improves the space-filling 
properties of a Latin hypercube (Ye et al. 2000).  
 
Typically, we use d(d+1)/2 points for a response surface, where d is the dimension .  
Since we already have 2 d points from part 1, we just evaluate  d(d+1)/2  -2d  new points.  
So now we have evaluated H(p)z for  d(d+1)/2   different values  of the vector p=(p1, 

…,pd). 
 
 We will then fit a  response surface RH(p)z  to these points. The purpose of the response 
surface is to provide an approximation of the function H that can be quickly evaluated.  
We can afford computationally to do hundreds of thousands of evaluations of the 
response surface whereas we can only do a few (hundred or hundreds of) evaluations of 
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the true function H.  RHi(p)z  is an approximation of the ith output of H(z) so RH1(z) is an 
approximation of the ERROR function and  RHi(p)z for i>1 is an approximation of the 
output functions Ow(z.)  
 
We will use a radial basis function response surface (e.g. Ruhmann, 2003)  with which 
we have had considerable experience.  We will then do N additional function evaluations.  
This will be done using our response surface  approaches using radial basis function  
(Regis and Shoemaker, 2004, in press).  Kriging is one type of radial basis functions that 
can be used for a response surface.  We will explore which type of response surface 
method is most effective.   We will construct the  radial basis function for all the output 
variables deemed to be important.  For example the hydraulic heads of groundwater in a 
number of locations are all different output variables based on H(p)z and a response 
surface can be created for each of these outputs. 
 
 We will then estimate the mean Hi

avg and the variance H ivar  of  each output variable 
Hi(p) using the following formulae: 
 
 

1
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The term prob ( Pj )  is the joint probability that the value of the  vector is Pj which is 
known from the measurement values and an assumption of independence. We use the 
notation H(Pj) to indicate the jth combination of parameter values  which is a specific 
instance of the vector p.   If only one parameter Pk is being varied, then Pj has the same 
components as the base case parameter vector P except that the kth  component has been 
perturbed.  
 
 In  this case NJ is a large number (e.g. 100,000) and represents a grid partition of the d 
dimensional space of the parameter variables.  The averages and the variances are then 
weighted by this probability.  Because the response surface is so efficient to evaluate, the 
evaluation at 100,000 points is not computationally expensive in comparison to the 
evaluation of a single simulation.  
 
Because we will have done hundreds of thousands of evaluations of the response 
surfaces, we can also compute the cumulative distribution function to describe the 
uncertainty (which is more information than just giving the variance) and  determine the 
probability that a certain variable exceeds some critical threshold { (which threshold can 
be defined by PDT) }, which might be more important and practical  than just knowing 
the variance. 
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We can also use this approach to estimate the error in the response surface.  We can use 
this information to guide the selection of additional points for evaluation of the real 
function H(z).  If NZ more points are selected to be evaluated, then the response surface 
would be updated and the estimates in (3) would be recomputed. 
 
 
Part III:  Bayesian Analysis:  In this step we will use a more complex analysis 
involving Bayesian statistics that will estimate the probability distribution and 
covariances associated with each of the d uncertain parameters. In the process, the mean 
and variance is also computed.  This is the topic of a new NSF project that has just been 
accepted (apparently) by NSF that is done in collaboration with a statistician David 
Ruppert. We would apply this analysis to the simulations done for Part II.  The prior 
distribution can be either assumed to be uniformly distributed within its allowable range 
or the prior distribution can be based on the experimental data used to estimate the 
parameter.  The method also incorporates transformations to deal with distributions that 
are not symmetric.  The method also nests the analysis.  In particular we propose to first 
do the analysis only for water movement (e.g. stages, velocities, etc.) and then use the 
posterior distribution of the water parameters as the prior distributions for parameters 
related to constituents like phosphorous.  This can be done because the phosphorous 
parameters do not affect water movement, but the water parameters can affect chemical 
constituents like phosphorous. 
 
Once we have the probability distributions of the parameters, we can then do Monte 
Carlo sampling on the response surface using the given probabilities to generate output 
for uncertainty and from this also assess the probability that a critical threshold is 
exceeded.  This analysis does a more thorough analysis of the statistical properties of the 
parameters and such information adds to understanding. 
 
 It is expected that to get a reasonable parameter distributions that Part III may take more 
simulations that Part II, in which case we would need to increase N (from part II).  We 
propose to do experiments with test functions (that are computationally fast) to estimate 
how much larger N would need to be for the Bayesian analysis.  The PDT would need to 
decide if the extra information gained from these simulations is worthwhile. The extent to 
which the more extensive statistical analysis proposed in Part III should be implemented 
can be decided in further discussions with PDT. 
 
Previous Experience of Investigator 

The investigator has years of experience in water resource modeling and analysis related 
to optimization (e.g. Yoon and Shoemaker, 1999 and 2001; Mansfield and Shoemaker, 
1998; response surfaces (e.g. Chen et al. 1999); calibration (Benaman et al., 2004), 
sensitivity (Benaman and Shoemaker, manuscript) and uncertainty analysis (e.g. Minsker 
and Shoemaker, 1998).  This research has included applications to both groundwater 
models (including reactive transport models) and to watersheds.   
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Her research is currently funded by two NSF grants and a third grant has apparently been 
approved: 

 1.“Improving Calibration, Sensitivity and Uncertainty Analysis of Data-Based Models of 
the Environment, “$350,000, 4/1/03 –3/30/06, [from Environmental Engineering program 
in Engineering. Directorate] National Science Foundation   

In this project, new function approximation (serial) algorithms developed by  my group will be applied 
to the problem of calibration of complex, nonlinear, computationally expensive, environmental models.  
As an example, the function approximation algorithm will be used with the transport model for 
anaerobic bioremediation of chlorinated ethenes by my group to assess the model’s ability to fit field 
data. The methodology developed also permits the analysis of multivariate sensitivity  and uncertainty 
analysis. 
 
2. “Multi-Algorithm Parallel Optimization of Costly Functions”, $380,000, 7/2003-6/2006 
[from Advanced Computing Research Program in the Computer and Information Science 
Directorate] National Science Foundation.  
 
 The objective of this project is to develop an effective parallel algorithm for finding near optima for 
costly nonconvex black box functions f(x) for x in D ⊂ Rd when derivatives of f(x) are unavailable.   
This methodology focuses on “costly”  f(x), i.e. the CPU time to evaluate f(x) once can range from 
many minutes up to many hours or days. Such problems arise in many areas of science and 
engineering, including the optimization of nonlinear systems that are described by partial 
differential equations.  Our approach is to design a coarse-grained procedure that is scalable and 
robust  for a variety of application problems and computing environments.  The proposed 
procedure iteratively uses function approximation algorithms. The algorithm will be applied to a 
range of difficult test problems and to costly real engineering functions. These applications come 
from the PI’s own research projects on environmental pollution and safety of drinking water 
 
3. “Integrating Bayesian Statistical Inference and Response Surface Optimization for 
Computationally Expensive Environmental Models”, (with D. Ruppert) $660,000 1/1/05-
1/1/08 [from the Statistics Program in Mathematical Sciences] {This proposal has been 
recommended for funding but we are awaiting final approval.] 
 
The research results from these current NSF  projects can be integrated into the analysis 
of the Everglades model analysis as appropriate.  Hence, the Everglades project will 
benefit from newly developed research that is directly applicable to the analysis of 
computationally expensive models like those being used to describe the Everglades. The 
fact that these NSF projects have all been funded supports the high quality of the research 
in this area. 
 
Shoemaker’s research has been acknowledged by the receipt of a number of awards 
including election to grade of “Fellow” in the American Geophysical Union, receipt of 
the Hines Award from ASCE, receipt of a Humbolt Research Prize, and election to the 
Joseph P. Ripley Professorship in Engineering at Cornell University. 
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